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Classical coding theory
Message space M = {0,1}k .
Transform message m = [m1, . . . ,mk ] into codeword

m1[g1] + · · ·+ mk [gk ].

[gj ] ∈ {0,1}n,n > k , generate a Linear code C.

Simplest linear map {0,1} → {0,1}3:

0 7→ 000
1 7→ 111

Alternatively, vector space C is defined as the set of binary
vectors x satisfying (parity-check) equations,

x3 + x5 + x8 = 0
x2 + x4 + x5 + x8 = 0

...



Syndrome

Receive corrupted codeword y = x + e. Compute

σ1 = y3 + y5 + y8

σ2 = y2 + y4 + y5 + y8

...

They make up the coordinates of the syndrome vector
σ(y) = Hty.
The set of parity-check equations make up the parity-check
matrix H.

C = {x ∈ {0,1}n,Htx = 0}

H



Decoding problem

Decoding problem: given syndrome σ(y) = σ(x + e) = σ(e),
find e.

codewords should be far away from each other: large Hamming
distance. Code parameters: [n, k ,d ].

Decoding is NP-complete. But...



Classical LDPC codes

Code C defined by parity-check matrix H of low density, rows
and columns of constant (low) weight.

x3 + x7 + x23 = 0

Suppose syndrome computation gives us

y3 + y7 + y23 = 1
y3 + y5 + y11 = 1

Then we flip the value of y3. Bit flipping algorithm: if flipping the
value of a bit decreases the syndrome weight, then flip its
value. Repeat.

Simplest of extremely efficient, suboptimal (but almost optimal
when used cleverly) decoding algorithms.

Gallager 1963... Extremely active field since 1990s.



Cycle codes of graphs

Particular instance. The case when columns of H have exactly
two ‘1’s per column. Then H is incidence matrix of graph.

edges

vertices H



Example: the Petersen code

H =



1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 1 0 0



a

b

cd

e

a

b

cd

e



Example: the Petersen code

H =



1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 1 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0
0 0 0 0 0 0 0 1 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0 1 0 1 1 0 0


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[
1 0 0 0 1 0 1 0 0 1 0 0 1 0 0

]
Codewords are cycles
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Cycle codes: parameters

[n, k ,d ] code in {0,1}n = {0,1}E

Vectors of {0,1}n ↔ Subsets of edges

Cycle codes have length n, dimension

k = #Edges−#Vertices + 1

and the minimum distance is the size of the smallest cycle
(girth of the graph).

Petersen: [15,6,5].



Erasure Correction

Look at erased connected components, correct hanging edges,
repeat.
Terminates properly if the set of erased edges does not cover a
cycle. One can always correct d − 1 erasures.



Error Correction
In principle we can always correct e < d/2 errors. Practically ?

Identify vertices incident to an odd number of 1s.
Then connect them with as few edges as possible. Those are
the bits in error.
Polynomial time ! Non-trivial: Edmunds’ Blossom algorithm.
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rate) ?

Yes.

Random methods (Erdös Sachs, also Gallager)
Margulis’ algebraic method.
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Margulis’ approach

Construct Cayley graphs G = C(G,S).

g gs

Obtain G as finite quotient of infinite regular tree, by choosing
for G quotient of free group Γ on generator set S.

Concrete example: Γ free group generated by

A =

[
1 2
0 1

]
A−1 =

[
1 −2
0 1

]
B =

[
1 0
2 1

]
B−1 =

[
1 0
−2 1

]
.

in SL2(Z). Take quotient by choosing G = SL2(Fp) for same
generator set S.

Girth argument: as long as matrix elements stay smaller than
p, local one-to-one correspondence between products of
elements of G and Γ, i.e. between neighbourhoods of infinite
tree and finite graph, hence d ≥ log n.



Cycle codes and erasure channel

Behaviour of cycle code on the erasure channel ?

Standard LDPC approach. Erasure channel is simpler than
BSC (Binary Symmetric), figure out resistance to erasures first.

Each coordinate is erased with independent probability p.
Yields erasure vector in {0,1}n. Decodable iff erasure vector
does not cover a codeword.

In other words, what is the probability that a random set of
edges contains a cycle (non decodable event) ?

For a regular graph of degree ∆, relate to percolation on infinite
∆-regular tree.



Percolation on trees
Infinite tree. Choose every edge with probability p. Probability
that the chosen subgraph contains an infinite path
(percolation) ?

Answer: zero if p < 1/(∆− 1), one if p > 1/(∆− 1).
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Critical probabilities

Percolation on infinite tree implies erasure pattern covers
cycles in the finite ∆-regular graph.

Example: ∆ = 4.

Beyond the critical probability p > 1/3, erasure recovery is not
possible for cycle codes (Decreusefond Z. 1997)

For p < 1/3, it is if the graph is “good” enough: e.g. Ramanujan
graphs (Tillich Z. 1997)

Compare with Shannon bound.

pc ≤ 1− R = 1/2.



Digression
Percolation for other infinite ∆-regular graphs.

Most classical case and most studied: Z2, infinite grid.

Critical probability: pc = 1/2.
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Classical LDPC coding, summary

defined by sparse parity-check matrix.
super simple decoding (e.g. bit-flipping)
cycle codes of graphs: simplest non-trivial instances of
LDPC codes
bit-flipping doesn’t work for cycle codes, but effecient
decoding anyway
can be constructed randomly or by algebraic (arithmetic)
methods
erasure decoding collapses when you have percolation



Quantum errors

qubit:
|φ〉 = α|0〉+ β|1〉.

X error:
X |φ〉 = α|1〉+ β|0〉.

Z error:

Z |φ〉 = α|0〉 − β|1〉.

Both at the same time: XZ .

Or any complex linear combination of I,X ,Z ,XZ .



Protecting |φ〉

Take |φ〉 = α|0〉+ β|1〉 to

α
∑
M∈S

M|0000000〉+ β
∑
M∈S

M|1111111〉

where S is abelian group of error patterns generated by

IXXXXII IZZZZII
XIXXIXI and ZIZZIZI
XXIXIIX ZZIZIIZ

that come from the binary matrix

H =

0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1





Syndrome computation

Suppose |ψ〉 is corrupted to E |ψ〉

E = IIIIXII (say)

and suppose we can somehow compute classical syndrome of
corresponding binary vector e

σ(e) = Hte

then classical decoding recovers e and E , and we apply the
unitary E−1 to the corrupted quantum state to recover |ψ〉.

Is this possible ? Yes !



Syndrome computation

For any value s = (sX , sZ ) (X -syndrome and Z -syndrome)
the set of states

Es|ψ〉,

for Es a Pauli error of syndrome s and |ψ〉 an encoded quantum
state, generates a subspace C(s) such that

H =
⊥⊕
s

C(s).

Meaning we can measure the syndrome.

Furthermore, measuring “forces” the error to be a Pauli error.



CSS quantum codes

The CSS (Calderbank Shor Steane) stabilizer code structure:

H =

HZ

HX

Important technicality 1: row space VX of HX and row space VZ
of HZ must be orthogonal.

Important technicality 2: error vectors EX in VX have zero sZ
syndrome, but they don’t count: EX |ψ〉 = |ψ〉.

Problematic errors. Errors of zero syndrome not in VX or VZ .



CSS codes, parameters

Dimension of quantum code is n − dim VX − dim VZ .

Minimum distance d is minimum weight of vector orthogonal to
VX but not in VZ or orthogonal to VZ but not in VX .

Objective: study quantum CSS codes. HX and HZ both
low-density.

Motivation: as before, efficient decoding. Decoding: find EX
and EZ from syndromes sX and sZ . Totally classical
computation.

Additional motivation: use degeneracy, meaning same
syndrome can correct many different errors.



Asymptotic constructions of quantum LDPC codes

Challenge: construct quantum LDPC code with non-trivial
(growing) minimum distance.

Many constructions give constant minimum distance.

Random methods don’t work. Choose low density HX at
random. Then V⊥X has minimum distance linear in n. No
codewords of low weight means there is nothing to put in
HZ .
Best known lower bound on d for a quantum CSS code of
dimension 1:

√
n log n (!)

How does one construct CSS codes of constant rate and
growing minimum distance ?
What is the quantum counterpart of cycle codes of
graphs ?
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The basic construction: Kitaev’s toric code

HX =

HZ =

HX parity-check matrix of cycle code of graph.

HZ : rows consist of elementary cycles (faces).

Dimension:
k = n − dim VX − dim VZ = dim V⊥X /VZ = dim V⊥Z /VX = 2.
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Kitaev’s toric code, minimum distance

Cycles that are not sums of faces. In V⊥X but not in VZ .

Vector of V⊥Z not in VX .

We obtain the quantum code’s parameters

[[2m2,2,m]] d =
√

n/2.
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Quantum erasure channel
Non erased positions are not in error.

In classical case: erasure vector is not correctable is it contains
(in its support) a codeword, i.e. an error pattern of syndrome 0.

In quantum case: erasure vector is not correctable if it contains
(in its support) a error pattern of syndrome (either sX or sZ ) 0
that is not in VX or VZ (a problematic error pattern).

For Kitaev code: non-correctable erasure pattern if erased set
of edges contains cycle that is not sum of faces, either in primal
or dual graph.

critical probability for this event – Percolation on Z2 !

pc =
1
2

Compare with capacity of quantum erasure channel

R ≤ 1− 2p.
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Decoding errors

Decode both cycle graphs separately. Use Edmonds algorithm.
Many alternatives.
Is Kitaev code optimal for errors ?



Towards non-zero rate,the homological connection

Generalize to G a 2-complex (vertices, edges, faces) that
makes up a combinatorial surface: has dual 2-complex G∗,
(vertices↔ faces).

Spaces VX and VZ defined as before, and we have:

V⊥X /VZ = H1(G), V⊥Z /VX = H1(G) = H1(G∗)

(homology and cohomology groups of G).

Minimum distance is weight of smallest cycle that is not a
boundary, either in G or in G∗.

Generalizes cycle codes that are homology groups of
1-complexes (graphs).



Tilings of hyperbolic plane
Look for graphs that locally look like tilings of hyperbolic plane.
E.g. graph of degree 4 and faces are pentagons.
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Quantum codes from combinatorial surfaces

If such finite graphs exist they have positive rate. For degree 4
and pentagons: R ≥ 1/10.
How does one construct the combinatorial surface from the
infinite graph ?

Random constructions ???

Algebraic constructions (Margulis) ? Yes.

Furthermore, large injectivity radius will yield growing minimum
distance.
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Triangular groups

Realise infinite tiling through triangular group, then take finite
quotient.

Triangular group T : generators {a,b}, relations

a2 = 1,b` = 1, (c)m = 1 for c = ab

Cosets of 〈a〉: edges. Cosets of 〈b〉 vertices. Cosets of 〈c〉
faces. Two cosets incident if they have non-empty intersection.



Construction of the finite graph

Margulis type approach (Širáň 2001). Realise triangular group
T as a matrix group.

B and C matrices of SL3(Z[ξ]) :

B =

 −1 −P`(ξ) 0
P`(ξ) P`(ξ)2 − 1 0
Pm(ξ) Pm(ξ)P`(ξ) 1

 and C =

Pm(ξ)2 − 1 0 Pm(ξ)
P`(ξ) 1 0
−Pm(ξ) 0 −1

 .
ξ = 2 cos(π/m`) and Pk Chebychev polynomial.

Generators a = CB and b = B generate subgroup of SL3(Z[ξ])
with exactly the presentation a2 = 1, b` = 1 and (ab)m = 1.

Reduce coefficients modulo p to get desired finite group.



Minimum distance

In infinite graph.
r -neighbourhood of a vertex is planar, so every cycle is sum of
faces. Same for dual graph.

In finite graph.
As long as r -neighbourhood of finite graph is isomorphic to
r -neighbourhood of infinite tiling then cycle of length < 2r
(included in r -neighbourhood) is sum of faces.

We have local isomorphism for r ≥ log n (Širáň, à la Margulis).
Hence

d ≥ log n.

Best one can do for quantum codes from tilings of surfaces
(Delfosse 2013).



Behaviour on erasure channel

Upper bound on critical probability for erasure correction given
by:

Critical probability for percolation on infinite tiling.

Non-trivial computation. Recent progress (Delfosse Z. 2016).

Cannot achieve capacity of quantum erasure channel.
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Towards better quantum LDPC codes
Construction (Tillich, Z 2009) gives quantum LDPC codes with
constant positive rate and minimum distance O(

√
n).

Ideas: consider product graph construction: two graphs G and
G′ give product graph G ·G′ where (x , x ′)−−− (y , y ′) if

either x = y and x ′ −−− y ′

or x −−− x ′ and x ′ = y ′.

Remark: 2-dimensional torus

is product of two cycles, with a face being determined by edge
{a,b} of G and {x , y} of G′.

(a, x)

(a, y)

(b, x)

(b, y)
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Quantum “product” codes (Tillich-Z 2009)

Code can be described by two factor graphs. Start with
ordinary bipartite graph A↔ B and create:

α

a

β

b

A

A

B

B

×
A2

B2

BA

AB

αa

bβ

ba

αβ

X

X

Z

Z



Quantum Parameters

Length: n = |A|2 + |B|2.
Dimension: k ≥ (|A| − |B|)2

Minimum distance: equal to min(d ,dT )

where d is minimum distance of “original” classical LDPC code
defined by factor graph A↔ B, and dT is the minimum distance
of the transpose code i.e. the code defined by the factor graph
B ↔ A. Typically minimum distance is exactly d .

Can be decoded in quasi-linear time from any pattern of O(
√

n)
errors (Leverrier, Tillich, Z. 2015).



Conclusion and open problems

Quantum codes associated to 2-complexes are the
quantum counterpart of cycle codes of graphs.
Strong topological connection.
Do asymptotically good quantum LDPC stabilizer (CSS)
codes exist ?
Do quantum LDPC codes exist with d = O(n) (even with
dimension 1) ?
Really efficient decoding ?
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