Photonic quantum state transfer between a cold atomic gas and a crystal

Institut de Ciències Fotòniques

Nicolas Maring, Pau Farrera, Kutlu Kutluer, Margherita Mazzera, Georg Heinze,

and Hugues de Riedmatten

QPSA - Quantum photonics with solids and atoms

ICFO - The Institute of Photonic Sciences (Barcelona)

GDR IQFA 2017

Nicolas Maring (ICFO)

Motivation

Quantum

Quantum channel

Re-emit

Store

node

Quantum Networks

- **Distributed Quantum Computing** ٠
- Quantum Communication / Cryptography •
- Metrology / Sensing •

H.J. Kimble, *The quantum internet*, Nature **453**, 1023 (2008).

Different Approaches:

T. Chanelière, D. N. Matsukevich, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy & A. Kuzmich, Nature 438, 833-836 (2005) C. W. Chou, H. de Riedmatten, D. Felinto, S. V. Polyakov, S. J. van Enk & H. J. Kimble, Nature 438, 828-832 (2005) S. Ritter et al, Nature 484, 195-200 (2012)

Photonic quantum state transfer between a cold atomic gas and a crystal

Duan, Lukin, Cirac, Zoller, Nature, 414, 413-418 (2001)

Tuneable single photon source

P. Farrera, et al. Nat. Com. 7, 13556 (2016)

Quantum processing via Rydberg excitations

M. Saffman, Rev. Mod. Phys. 3, 2313-2363 (2010)

Challenges

- Single photon interacts strongly with the two nodes noise-free
- Wavelength and bandwidth matching (narrowband nodes)
- Preserve quantum superposition

Challenges

- Single photon interacts strongly with the two nodes noise-free
- Wavelength and bandwidth matching (narrowband nodes)
- Preserve quantum superposition

Cold atomic cloud

⁸⁷Rb MOT

10⁸ atoms

Τ ~ 80μΚ

NATURE VOL 414 22 NOVEMBER 2001

articles

Long-distance quantum communication with atomic ensembles and linear optics

L.-M. Duan*+, M. D. Lukin‡, J. I. Cirac* & P. Zoller*

- Non-classically correlated photons
- Embedded storage

$$|\Psi\rangle = \frac{1}{\sqrt{N}} \sum_{j=1}^{N} e^{i(\overrightarrow{k_W} - \overrightarrow{k_w})\overrightarrow{x_j}} |g_1 \dots s_j \dots g_N\rangle$$

"Spin-wave"

Cold atomic cloud

⁸⁷Rb MOT

10⁸ atoms

Τ ~ 80μΚ

NATURE VOL 414 22 NOVEMBER 2001

articles

Long-distance quantum communication with atomic ensembles and linear optics

L.-M. Duan*†, M. D. Lukin‡, J. I. Cirac* & P. Zoller*

- Non-classically correlated photons
- Embedded storage

Cold atomic cloud

8

Tuneable bandwidth and waveform

Rare-earth doped crystal

 $Pr^{3+}: Y_2SiO_5$

Atomic Frequency Comb (AFC) protocol

Collective, coherent emission in the forward mode (Photon echo-like)

Rephasing after
$$t_e = \frac{2\pi}{\Delta}$$

otocol $T \sim 3 K$

Rare-earth doped crystal

Pr³⁺: YSO

Atomic Frequency Comb (AFC) protocol

 $|e\rangle$ out (606 nm) 5 |g
anglePreparation beam (606 nm)

T ~ 3 K

M. Afzelius, C. Simon, H. de Riedmatten, and N. Gisin, Phys.Rev.A 79, 052329 (2009)

Quantum frequency conversion interface

Cascaded conversion

- > 2 PPLN non-linear waveguides
- > 1 % total conversion efficiency including all losses ($\eta_{opt} = 4\%$)
- Pump induced noise (Raman, parametric fluorescence)

Quantum frequency conversion interface

Non-classical correlation preservation through conversion

P. Farrera, N. Maring, G. Heinze, H. de Riedmatten, Optica 3, 1019 (2016)

Quantum frequency conversion interface

Cascaded conversion

- > 2 PPLN non-linear waveguides
- > 1 % total conversion efficiency including all losses ($\eta_{opt} = 4\%$)
- Pump induced noise (Raman, parametric fluorescence)
- Also used to lock the frequency of the converted light making sure the read photon in always resonant with the crystal

 10^{-3} probability of read photon retrieval

Results

Photon generation, conversion and storage

SNR = 17

Preservation of quantum correlations

Single collective excitation is transfered from one to the other sytem via single photon

Time-bin qubit storage

Time-bin qubit storage

Time bin qubit analysis

Time-bin qubit

 $|\Psi\rangle = \frac{1}{\sqrt{2}}(|\text{early}\rangle + e^{i\phi}||\text{late}\rangle)$

- 1. Prep. time-bin qubit
- 2. Convert & Store
- 3. Tomography (use AFC memory as analyser)

AFC echo phase shift
$$\phi_e = e^{i2\pi\delta/\Delta}$$

Time bin qubit tomography

 $\mathcal{F} = \langle \psi | \varrho | \psi \rangle = \textbf{85.8} \pm 3.3\%$

N. Maring, P. Farrera, K. Kutluer, M. Mazzera, G. Heinze, and H. de Riedmatten, Nature 551, 485–488 (2017)

Conclusion

Proof of principle of interconnection between disparate quantum nodes

- Preservation of quantum correlations
- Faithful qubit transfer

Outlook

- Increase efficiency and on-demand storage time (spin wave storage in crystal)
- Heralded entanglement
- Platform to connect more systems through telecom wavelength

Hugues de Riedmatten

Thank you

Nicolas Maring (ICFO)

Full setup

Frequency stability

Weak Coherent State Measurements

Institut de Ciències Fotòniques

Storage time characterizations

Institut de Ciències Fotòniques