

Reversible information-energy conversions in a quantum hybrid system

Cyril Elouard, Maxime Richard, Alexia Auffèves Team NPSC, Neel Institute – CNRS, Grenoble, France

Colloquium GDR IQFA 22 November 2013

Maxwell's demon paradox

The demon's memory

neel.cnrs.fr

The demon's memory

neel.cnrs.fr

Where Shannon's entropy of the bit is:

$$\mathbf{H} = -\mathbf{P}_1 \log_2 \mathbf{P}_1 - \mathbf{P}_0 \log_2 \mathbf{P}_0$$

(in bits)

CINIS

Landauer's Erasure of a bit

 $H_i = 1 \longrightarrow H_f = 0$

Work required W

Landauer's principle

$$W \ge W_0 = kT \ln 2$$

Rolf Landauer

Landauer's Erasure of a bit

 $H_i = 1 \longrightarrow H_f = 0$

Work required W

If the erasure is a *reversible* (very slow) transformation:

Rolf Landauer

Szilard 's engine

Rolf Landauer

$H_i = 1 \longleftarrow H_f = 0$

Work *extracted* W

If the erasure is a *reversible* (very slow) transformation:

Leo Szilard

$W_0 = kT \ln 2$ is the elementary work corresponding to 1 bit of information

If information becomes quantum...

Alice's point of view

Global point of view

 $\operatorname{Tr}_{B} \rho_{AB} = \mathbb{I}/2$

Maximally mixed state, no work extraction possible

Pure state, H = 0

Can perform a Szilard engine and convert the information into work

To check quantum info thermodynamics theorems we need:

CNrs

- I) Standard Landauer's erasure protocol
 - Standard protocol
 - Optical protocol
- II) A battery enabling to monitor work exchanges
- III) Full cycle of energy-information conversions
- IV) Proposal for optical Carnot engine

t = 0

t = 0

Work performed by the operator while raising one of the states

$$W(t) = \int_0^t P(E) \, dE$$

Population of the state

Szilard engine protocol

The qubit is in a known state and isolated from the bath

t < 0

Szilard engine protocol

The empty state is raised with no work cost

t < 0

Szilard engine protocol

The qubit is put in equilibrium with the bath

t = 0

 $0 < t < t_{f}$

 $0 < t < t_{f}$

 $t = t_f$

- I) Standard Landauer's erasure protocol
 - Standard protocol
 - Optical protocol
- II) A battery enabling to monitor work exchanges
- III) Full cycle of energy-information conversions
- IV) Proposal for optical Carnot engine

 $\pmb{\gamma}$ spontaneous emission rate g classical Rabi frequency δ atom-laser detuning

Saturated regime $\mathbf{g} \gg \boldsymbol{\gamma}$

- γ spontaneous emission rate
- g classical Rabi frequency
- δ atom-laser detuning

After some $1/\gamma$, the population of the excited state is in the steady state:

$$P_e(\delta) = \frac{1/2}{1 + (\delta/g)^2}$$

The Rabi frequency g plays the role of the bath temperature

After some $1/\gamma$, the population of the excited state is in the steady state:

$$P_e(\delta) = \frac{1/2}{1 + (\delta/g)^2}$$

The effective thermalization time $1/\gamma$ is very short \rightarrow Reaching reversibility is easier than with a thermal bath

After some $1/\gamma$, the population of the excited state is in the steady state:

$$P_e(\delta) = \frac{1/2}{1 + (\delta/g)^2}$$

δ must vary on a time scale slow with respect to 1/ γ

A colored bath

- The right side of the plot is very similar
- Behaviour is different for negative detuning

A new value of the elementary work

Thermal bath

Optical bath

kΤ

$$W_0 = kT \ln 2 \quad \longleftrightarrow$$

$$W_L = \hbar \int_0^\infty P_e(\delta) d\delta = \hbar g \, \frac{\pi}{4}$$

g

Summary

We need an external operator able to increase the detuning adiabatically and that we can monitor

- I) Standard Landauer's erasure protocol
 - Standard protocol
 - Optical protocol
- II) A battery enabling to monitor work exchanges
- III) Full cycle of energy-information conversions
- IV) Proposal for optical Carnot engine

Specifications for the external operator device

Specifications for the external operator device

→ A solution: couple the atom to an oscillating nanowire

External operator:

Oscillating nanowire.

Set up : nano `trumpets'

I.Yeo et al., arXiv:1306.4209 (2013) accepted in Nature Nano

Bath:

Laser resonant with the bare atomic frequency + vacuum

Qubit: Artificial atom (Quantum dot).

Strain-mediated coupling

Source: I.Yeo et al., arXiv:1306.4209 (2013), accepted in Nature Nano

Fluorescence spectroscopy of the embedded atom

Atomic frequency variation $\delta \omega(t)$ (µeV)

Source: I.Yeo et al., arXiv:1306.4209 (2013), accepted in Nature Nano

Source: I.Yeo et al., arXiv:1306.4209 (2013), accepted in Nature Nano

I.Yeo et al., arXiv:1306.4209 (2013), *accepted in Nature Nano* A. Auffèves et al., arXiv:1305.4252 (2013)

We consider a coherent state of the mechanical oscillator \rightarrow Complex amplitude $\beta(t) = \langle b \rangle$

$H \rightarrow Optical Bloch equations$

$$E_{MO}(t) = \hbar \Omega |\beta(t)|^2$$
 Mechanical energy

$$E_{MO}(t) - E_{MO}(0) = \int_0^t dt \,\dot{\delta} P_e(t) = w(t)$$

Measuring $\beta(t)$ gives access to the work performed on the qubit !

 \rightarrow Light deflexion techniques

Summary

At t=0, we kick the oscillator and let it evolve ...

neel.cnrs.fr

- I) Standard Landauer's erasure protocol
 - Standard protocol
 - Optical protocol
- II) A battery enabling to monitor work exchanges
- III) Full cycle of energy-information conversions
- IV) Proposal for optical Carnot engine

- Atom erased: W=0
- Atom decoupled from the bath

neel.cnrs.fr

Observing work exchanges

Variation of $|\beta|$ when leaving or coming in resonance \rightarrow exchange of work

Typically W_L corresponds to:

 $\Delta x = 0.4 \text{ pm}$ Amplitude: 1.2 pm Signal/Shot noise = 40 Signal/Thermal noise = 0.3

(g = 3 GHz, g_m = 30 MHz, $\beta_0 = 10^2$, $\Omega/2\pi = 550$ kHz, T = 100 mK)

→ Measurable with current deflexion techniques
B. Sanii et al. PRL 104 (2010)

Variation of $|\beta|$ when leaving or coming in resonance \rightarrow exchange of work

Variation of $|\beta|$ when leaving or coming in resonance \rightarrow exchange of work

Second quarter of oscillation Szilard's engine

cnrs

- I) Standard Landauer's erasure protocol
 - Standard protocol
 - Optical protocol
- II) A battery enabling to monitor work exchanges
- III) Full cycle of energy-information conversions
- IV) Proposal for optical Carnot engine

Principle of the engine

$$W_{stored} = -\hbar g \,\frac{\pi}{4} + \hbar g \,\frac{\pi}{4} + \hbar g \,\frac{\pi}{4} - \hbar g \,\frac{\pi}{4} = 0$$

neel.cnrs.fr

Principle of the engine

$$W_{stored} = -\hbar g_1 \frac{\pi}{4} + \hbar g_2 \frac{\pi}{4} + \hbar g_2 \frac{\pi}{4} - \hbar g_1 \frac{\pi}{4} > 0$$

Carnot efficicieny in finite time

$$\eta = 1 - g_2 / g_1$$
$$\iff \eta_C = 1 - T_2 / T_1$$

Carnot ideal efficiency reached with realistic parameters!

Carnot efficicieny in finite time

P = 10⁻¹⁷ W

Carnot ideal efficiency reached

$$\eta = 1 - g_2 / g_1$$

$$\iff \eta_C = 1 - T_2 / T_1$$

3 order of magnitudes over existing proposals of single qubit heat engines

O. Abah et al., PRL 109, 203006 (2012).

Conclusion

I.Yeo et al., arXiv:1306.4209 (2013) accepted in Nature Nano A set up enabling reversible information energy conversion in a qubit

- Direct observation of work exchanges in a quantum battery
- SiC Nanowire NV defect Microwave Amicrowave antenna Magnetic gradient source

W tir

O. Arcizet et al., Nature Physics 7 (2011) 879

• Mechanical oscillations perform Carnot cycles at maximum efficiency

I.Yeo et al., arXiv:1306.4209 (2013) accepted in Nature Nano Now that the building blocks Landauer's erasure & Szilard engine are ensured, we can go to the fully quantum regime

- Erasure cost of two entangled qubits L. del Rio et al., Nature 474, 61--63 (2011)
- Measurement of work distribution during conversions → in situ verification of quantum fluctuation theorems L. Mazzola et al., PRL 110 (2013)

Thank you for your attention

 $W_L = \hbar g \frac{\pi}{\Delta}$

More details in: Cyril Elouard, Maxime Richard, Alexia Auffèves, arXiv:1309.5276

1st cycle: Landauer's erasure + Szilard engine

2nd cycle: *inverse* Landauer's erasure + *inverse* Szilard engine

1)Experimental implementation

NV center in a nanowire under magnetic field gradient

O. Arcizet et al., Nature Physics 7 (2011) 879

3) Direct measurement of work distribution

Can be extracted from quantum jump trajectories of the qubit during erasure

Verification in situ of Fluctuation theorems such as Jarzinsky equality

4) Color of the emitted photons

Color of the photon emitted during erasure contain information about the dissipated heat and then must quantify the irreversibility of the engine.

> → Alternative devices with monitored environment Pekola et al., arXiv:1212.5808 B.Huard group set up

Hamiltonian describing the optomechanical device

$$H = \underbrace{\hbar \omega_0(\sigma_z + 1/2)}_{atom} + \underbrace{\hbar g(\sigma_+ e^{-i\omega t} + \sigma_- e^{i\omega t})}_{light \ coupling} + \underbrace{\hbar g_m(b + b^{\dagger})\sigma_z}_{Mech. \ coupling} + \underbrace{\hbar \Omega b^{\dagger}b}_{phonon \ mode}$$

neel.cnrs.fr

Heat ≠ all the photon emitted

emissions

Heat ≠ all the photon emitted

When detuning is varying, the change in emitted photons frequency cause an energy excess which is equivalent to the dissipated heat

