Hong-Ou-Mandel effect with matter waves

R. Lopes, A. Imanaliev, A. Aspect, M. Cheneau, **DB**, C. I. Westbrook

Laboratoire Charles Fabry, Institut d'Optique, CNRS, Univ Paris-Sud

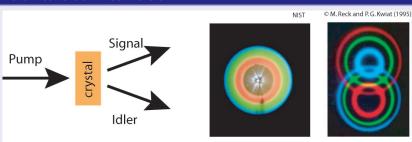
Progresses in quantum information and quantum simulation, Lyon, November, 18th 2014

Outline

- Quantum Optics with light
- 2 HOM effect with photons
- Quantum Optics with atoms
- 4 HOM effect with metastable helium atoms
- **6** Conclusion and perspectives

Quantum Optics with light

Some Quantum Optics milestones

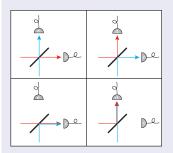

- 1935: Einstein, Podolski & Rosen concept of entanglement
- 1956: Hanbury Brown & Twiss bunching from chaotic source
- 1963: Bell's inequality quantum vs local hidden variable theory
- 1970: Burnham & Weinberg pairs of photon
- 1987: Hong, Ou & Mandel 2-photon interference

Quantum optics

- Effects involving at least two particles
- This talk: pairs of particles

Pairs of photons

Parametric down-conversion



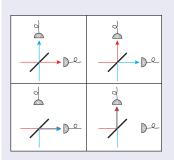
- Non-linear $\chi^{(2)}$ crystal
- Undepleted pump: $\hat{H}=i\hbar\int d\mathbf{k}_id\mathbf{k}_s\kappa_{i,s}\left(\hat{a}_s^\dagger\hat{a}_i^\dagger-\hat{a}_s\hat{a}_i\right)$
- Phase-matching conditions : $\omega_p = \omega_i + \omega_s$ and $\mathbf{k}_p = \mathbf{k}_i + \mathbf{k}_s$
- Burnham & Weinberg: increased coincidence with detectors at phase matching

Hong Ou Mandel effect

2 photons + 1 beam-splitter: 4 possibilities

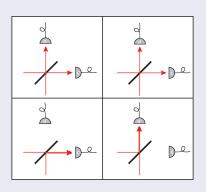
• 2 distinguishable photons

$$P_{cd} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$


• 2 indistinguishable photons

•
$$P_{cd} = |A_{TT} + e^{i\pi} A_{RR}|^2 = 0!!$$

Hong Ou Mandel effect

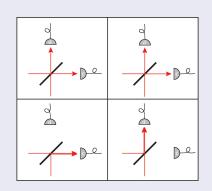

2 photons + 1 beam-splitter: 4 possibilities

• 2 distinguishable photons

$$P_{cd} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

• 2 indistinguishable photons

•
$$P_{cd} = |A_{TT} + e^{i\pi} A_{RR}|^2 = 0!!$$


Hong Ou Mandel effect

2 photons + 1 beam-splitter: 4 possibilities

• 2 distinguishable photons

$$P_{cd} = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$

• 2 indistinguishable photons

•
$$P_{cd} = |A_{TT} + e^{i\pi} A_{RR}|^2 = 0!!$$

Hong, Ou & Mandel, Phys. Rev. Lett. **59**, 2044 (1987)

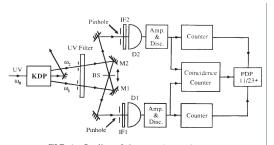
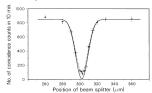



FIG. 1. Outline of the experimental setup.

Need beam-splitter, pin-hole, spectral filters, photon-counter, coincidence counts, path delay

Two-photon interference

The 'HOM dip' for indistinguisable photons works for 2 independent photons but experiment easier with pairs of photon

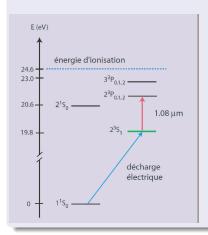
Hong Ou Mandel: striking 2-particle effect for input state of one particle per input beam

Quantum Optics with ultra-cold atoms

Pro-Cons

- Another platform for quantum information
- • More degrees of freedom (internal state, boson/fermion)
- Controllable, tunable and strong non-linearity
- Purity of the state
- Manipulation (mirrors, beam-splitter, pin-hole, vacuum...)

- Entanglement by atom-light interaction (cavity), by atom-atom interaction
- Entanglement with internal or external degrees of freedom

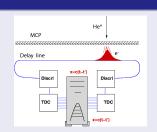

Mechanisms

- Molecular dissociation: $Mol.(p = 0) \rightarrow At.(p) + At.(-p)$ \rightarrow M. Greiner *et al*, Phys. Rev. Lett. **94**, 110401 (2005)
- Inelastic collision: $2(m_F = 0) \rightarrow (m_F = +1) + (m_F = -1)$ \rightarrow B. Lücke *et al*, Science **334**, 773 (2011), C. Gross *et al*, Nature **480**, 219 (2012), C. D. Hamley *et al*, Nat. Phys. **8**, 305 (2012)
- Decay from excited state by pairs: $2(\nu_y = 1, p = 0) \rightarrow (\nu_y = 0, p) + (\nu_y = 0, -p) \rightarrow R$. Bücker *et al*, Nat. Phys. **7**, 608 (2011)
- Collision between 2 BEC: $k_0 + (-k_0) \to k_1 + k_2 \to A$. Perrin *et al*, Phys. Rev. Lett. **99**, 150405 (2007)
- Lattice-assisted collision: $2k_0 \rightarrow k_1 + k_2$ \rightarrow M. Bonneau *et al*, Phys. Rev. A **87**, 061603(R) (2013)

Quantum atom optics with metastable helium (He*)

Specificities of He*

 2^3S_1 : metastable helium (life-time of ~ 2 h): $\mbox{He*}$

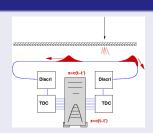

- ullet Laser cooling at 1.08 $\mu {
 m m}$
- 2001: Bose-Einstein Condensate of $\sim 10^5$ atoms
- High internal energy↓↓
- Electronic detection by micro-channel plates (MCP)

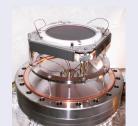
Principle of the 3D detector

The detector

- Cloud released from the trap

 → atoms fall 50 cm to detector
 (300 ms fall time)
- MCP: low-noise electronic amplifier
 - \Rightarrow sensitive to single atom (quantum efficiency $\sim 25\%$)
- 3D detector: x, y and t (resolution 140 ns, 250 μm)
 - \Rightarrow Measurement of $\vec{\mathbf{v}}$ $(x_0 + v_0 t \approx v_0 t)$


• Measurement of 2-body correlation $G^{(2)}(\vec{\mathbf{v}},\vec{\mathbf{v}'})$


Principle of the 3D detector

The detector

- Cloud released from the trap
 → atoms fall 50 cm to detector
 (300 ms fall time)
- MCP: low-noise electronic amplifier
 - \Rightarrow sensitive to single atom (quantum efficiency $\sim 25\%$)
- 3D detector: x, y and t (resolution 140 ns, 250 μm)
 - \Rightarrow Measurement of $\vec{\mathbf{v}}$ $(x_0 + v_0 t \approx v_0 t)$

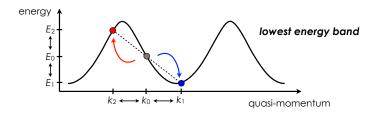
• Measurement of 2-body correlation $G^{(2)}(\vec{\mathbf{v}},\vec{\mathbf{v}'})$

Principle of the 3D detector

The detector

- Cloud released from the trap

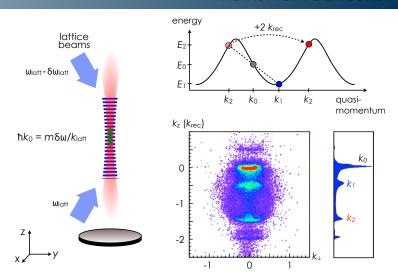
 → atoms fall 50 cm to detector
 (300 ms fall time)
- MCP: low-noise electronic amplifier
 - \Rightarrow sensitive to single atom (quantum efficiency $\sim 25\%$)
- 3D detector: x, y and t (resolution 140 ns, 250 μm)


 \Rightarrow Measurement of $\vec{\mathbf{v}}$ $(x_0 + v_0 t \approx v_0 t)$

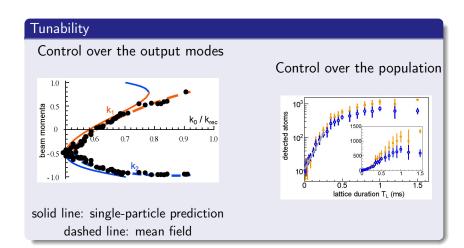
• Measurement of 2-body correlation $G^{(2)}(\vec{\mathbf{v}}, \vec{\mathbf{v}'})$

Lattice-assisted collisions

Dynamical instability of a BEC in a moving optical lattice

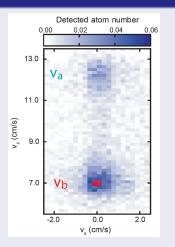

elastic collision between two atoms of the condensate:

$$k_0 + k_0 \rightarrow k_1 + k_2$$


Hilligsøe & Mølmer, PRA **71**, 041602 (2005) Campbell *et al.*, PRL **96**, 020406 (2006)

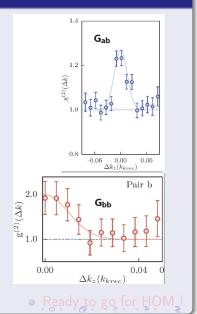
Lattice-assisted collision

Momentum distribution

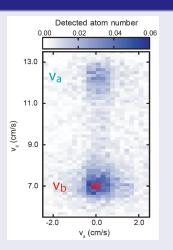


M. Bonneau et al, Phys. Rev. A 87, 061603(R) (2013)

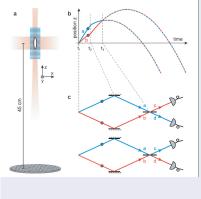
Atom pairs


- Pairs of atoms √
- Detection $\rightarrow G^{(2)}$
- +sub-Poissonian variance & violation of Cauchy-Schwarz inequality
- Beam-splitter √
 - Bragg diffraction
 - 2 laser beams $(\Delta \mathbf{k}, \Delta \omega)$
 - Resonant for $\mathbf{p}_a = \mathbf{p}_b + \hbar \Delta \mathbf{k}$ and $\frac{p_a^2}{\Delta} = \frac{p_b^2}{\Delta} + \hbar \Delta \omega$.
 - Transmission coef. ↔
 duration

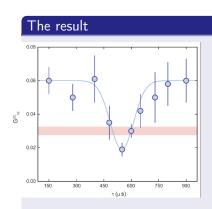
Ready to go for HOM


Atom pairs

- Pairs of atoms √
- Detection $\rightarrow G^{(2)} \checkmark$
- +sub-Poissonian variance & violation of Cauchy-Schwarz inequality
- Beam-splitter √
 - Bragg diffraction
 - 2 laser beams $(\Delta \mathbf{k}, \Delta \omega)$
 - Resonant for $\mathbf{p}_a = \mathbf{p}_b + \hbar \Delta \mathbf{k}$ and $\frac{p_a^2}{2} = \frac{p_b^2}{2} + \hbar \Delta \omega$
 - Transmission coef. ↔
 duration


Atom pairs

- Pairs of atoms √
- Detection $\rightarrow G^{(2)} \checkmark$
- +sub-Poissonian variance & violation of Cauchy-Schwarz inequality
- Beam-splitter √
 - Bragg diffraction
 - 2 laser beams $(\Delta \mathbf{k}, \Delta \omega)$
 - Resonant for $\mathbf{p}_a = \mathbf{p}_b + \hbar \Delta \mathbf{k}$ and $\frac{p_a^2}{2m} = \frac{p_b^2}{2m} + \hbar \Delta \omega$.
 - Transmission coef. ↔ duration


Ready to go for HOM!

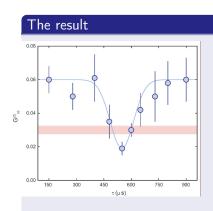
The experimental sequence

- t₀: Lattice switched on
- t₁: Trap switched off
- t_2 : Atomic mirror
- t_3 : Atomic beam-splitter $(t_3-t_0\sim 1 \text{ ms})$ exact timing of t_3 control the overlap
- $t \sim 300$ ms: Detection by MCP

Mirror and beam-splitter by Bragg diffraction

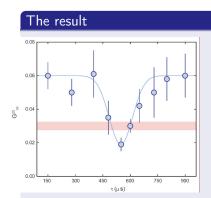
$$au = t_3 - t_2$$
: scan of the overlap Visibility: $V = \frac{G_{max}^{(2)} - G_{min}^{(2)}}{G_{min}^{(2)}}$

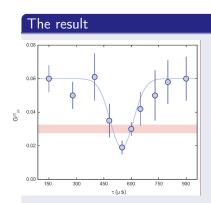
• DIP !!, with visibility of $V_{exp} = 0.65 \pm 0.07$


Dip not allowed for classical particles

• but with (matter-)waves ?

• not either since visibility > 0.5 (red area)

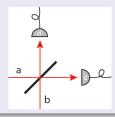

• ⇒ 2-atom interference


$$au = t_3 - t_2$$
: scan of the overlap Visibility: $V = \frac{G_{max}^{(2)} - G_{min}^{(2)}}{G_{min}^{(2)}}$

- DIP !!, with visibility of $V_{exp} = 0.65 \pm 0.07$
- Dip not allowed for classical particles
- but with (matter-)waves ?
- not either since visibility > 0.5 (red area)
- ⇒ 2-atom interference

$$au=t_3-t_2$$
: scan of the overlap Visibility : $V=rac{G_{max}^{(a)}-G_{min}^{(2)}}{\sigma^{(2)}}$

- DIP !!, with visibility of $V_{exp} = 0.65 \pm 0.07$
- Dip not allowed for classical particles
- but with (matter-)waves ?
- not either since visibility > 0.5 (red area)
- ⇒ 2-atom interference

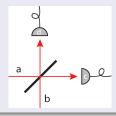


$$au=t_3-t_2$$
: scan of the overlap Visibility : $V=rac{G_{max}^{(a)}-G_{min}^{(2)}}{\sigma^{(2)}}$

- DIP !!, with visibility of $V_{exp} = 0.65 \pm 0.07$
- Dip not allowed for classical particles
- but with (matter-)waves ?
- not either since visibility > 0.5 (red area)
- ⇒ 2-atom interference

Non-zero dip

- atoms not totally indistinguishable
- \rightarrow unlikely Indistinguishable particles $\rightarrow V_{\rm max} = 1 \frac{G_{aa}^{(2)} + G_{bb}^{(2)}}{G_{aa}^{(2)} + G_{bb}^{(2)} + 2G_{ab}^{(2)}}$ Measurement of $V_{\rm max}$ with same sequence except mirror and beam-splitter non applied : $V_{\rm max} = 0.6 \pm 0.1$
 - $V_{exp} \approx V_{max}$: atoms indistinguishable up to our signal to noise
- OR input state is not exactly one atom per beam
- ullet ightarrow yes, mean atom number = 0.5 is not low enough

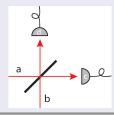

Non-zero dip

- atoms not totally indistinguishable
- o unlikely Indistinguishable particles o $V_{\sf max}=1-rac{G_{\sf aa}^{(2)}+G_{\sf bb}^{(2)}}{G_{\sf aa}^{(2)}+G_{\sf cL}^{(2)}+2G_{\sf cL}^{(2)}}$

Measurement of $V_{\rm max}$ with same sequence except mirror and beam-splitter non applied : $V_{\rm max}=0.6\pm0.1$

 $V_{exp} \approx V_{max}$: atoms indistinguishable up to our signal to noise

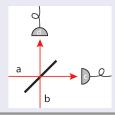
- OR input state is not exactly one atom per beam
- ullet ightarrow yes, mean atom number = 0.5 is not low enough


200

Non-zero dip

- atoms not totally indistinguishable
- ightarrow unlikely Indistinguishable particles ightarrow $V_{\text{max}}=1-\frac{G_{aa}^{(2)}+G_{bb}^{(2)}}{G_{aa}^{(2)}+G_{bb}^{(2)}+2G_{ab}^{(2)}}$ Measurement of V_{max} with same sequence except mirror and beam-splitter non applied : $V_{\text{max}}=0.6\pm0.1$

 $V_{exp} pprox V_{max}$: atoms indistinguishable up to our signal to noise


- OR input state is not exactly one atom per beam
- ullet ightarrow yes, mean atom number = 0.5 is not low enough

290

Non-zero dip

- atoms not totally indistinguishable
- \rightarrow unlikely Indistinguishable particles $\rightarrow V_{\rm max} = 1 \frac{G_{as}^{(2)} + G_{bb}^{(2)}}{G_{as}^{(2)} + G_{bb}^{(2)} + 2G_{ab}^{(2)}}$ Measurement of $V_{\rm max}$ with same sequence except mirror and beam-splitter non applied : $V_{\rm max} = 0.6 \pm 0.1$ $V_{\rm exp} \approx V_{\rm max}$: atoms indistinguishable up to our signal to noise
- OR input state is not exactly one atom per beam
- ullet yes, mean atom number = 0.5 is not low enough

290

Conclusion and perspectives

Observation of the Hong-Ou-Mandel effect

- Benchmarks our ability to make 2-particle interference
- Senchmarks our source (modes with similar wave-functions)
- ullet ~ 10 hours integration time for each point in HOM plot...

see also Kaufman et al, Science 345, 306 (2014)

Perspectives: EPR paradox and Bell's inequality

- State of our source $|\Psi
 angle = \int dp \; dp' A(p,p') |p,p'
 angle$
- The phase of A(p, p') matters for EPR and Bell!
- EPR: A. J. Ferris, Phys. Rev. A 79, 043634 (2009)
 → Homodyning the 2 atoms with condensate, measurement of atom number variance
- Bell: R. J. Lewis-Swan, K. V. Kheruntsyan, arXiv: 1411.019 (2014). → Need 4 modes, mixing 2 by 2 on beam-splitter, measurement of 2-body corr.