NONLOCALITY IN QUANTUM PHYSICS AND BEYOND

NICOLAS BRUNNER

Grenoble Nov 2012

1. WHAT IS NONLOCALITY

2. ENTANGLEMENT VS NONLOCALITY

3. SUPER-ACTIVATION OF NONLOCALITY

4. EPR STEERING

5. DEVICE-INDEPENDENT QIP

6. EXPERIMENTS

7. NONLOCALITY BEYOND QM

CORRELATIONS

ALICE (Geneva)

BOB (Grenoble)

CORRELATIONS

ALICE (Geneva)

CORRELATIONS

ALICE (Geneva)

BOB (Grenoble)

HOW DOES IT WORK?

CLASSICAL CORRELATIONS

ALICE (Geneva)

BOB (Grenoble)

CLASSICAL CORRELATIONS

ALICE (Geneva)

BOB (Grenoble)

CLASSICAL CORRELATIONS

ALICE (Geneva)

BOB (Grenoble)

DEVICES HAVE A COMMON STRATEGY

PRE-ESTABLISHED CORRELATIONS

ALICE (Geneva)

DEVICES HAVE A COMMON STRATEGY

PRE-ESTABLISHED CORRELATIONS

CAN THIS BE TESTED?

TWO QUESTIONS X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) TWO ANSWERS +1 or -1

TWO QUESTIONS X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) TWO ANSWERS +1 or -1

TWO QUESTIONS X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) TWO ANSWERS +1 or -1

TWO QUESTIONS X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) TWO ANSWERS +1 or -1

TWO QUESTIONS X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) TWO ANSWERS +1 or -1

TWO QUESTIONS X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) TWO ANSWERS +1 or -1

TWO QUESTIONS X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) TWO ANSWERS +1 or -1

TWO QUESTIONS X_0 or X_1 (Alice) Y_0 or Y_1 (Bob) TWO ANSWERS +1 or -1

Score $\leq \frac{3}{4}$ FOR ANY CLASSICAL STRATEGY

CHSH BELL INEQUALITY

Correlation function: $E(X_0, Y_1) = P(X_0 = Y_1) - \frac{P}{E}(X_0 \neq Y_1)$

Clauser-Horne-Shimony-Holt 69

CHSH BELL INEQUALITY

Correlation function: $E(X_0, Y_1) = P(X_0 = Y_1) - \frac{P}{E}(X_0 \neq Y_1)$

 $CHSH = E(X_0, Y_0) + E(X_0, Y_1) + E(X_1, Y_0) - E(X_1, Y_1) \le 2$

Clauser-Horne-Shimony-Holt 69

LOCALITY: $P(a,b|x,y) = \int d\lambda P(a|x,\lambda) P(b|y,\lambda)$

LOCALITY: $P(a,b|x,y) = \int d\lambda P(a|x,\lambda) P(b|y,\lambda)$

LOCAL CORRELATIONS SATISFY ALL BELL INEQUALITIES

LOCALITY: $P(a,b|x,y) = \int d\lambda P(a|x,\lambda) P(b|y,\lambda)$

LOCAL CORRELATIONS SATISFY ALL BELL INEQUALITIES VIOLATION OF BELL INEQUALITY - NONLOCALITY

BELL 64

QUANTUM STATEGY

QUANTUM STATEGY

- 1. ENTANGLED STATE $|\Psi\rangle = |0,1\rangle |1,0\rangle$
- 2. LOCAL MEAS $X_0 = \vec{z} \quad X_1 = \vec{x}$ and $Y_0 = -\vec{x} \cdot \vec{z} \quad Y_1 = \vec{x} \cdot \vec{z}$

QUANTUM STATEGY 1. ENTANGLED STATE $|\Psi\rangle = |0,1\rangle - |1,0\rangle$ 2. LOCAL MEAS $X_0 = \vec{z}$ $X_1 = \vec{x}$ and $Y_0 = -\vec{x} \cdot \vec{z}$ $Y_1 = \vec{x} \cdot \vec{z}$ $\vec{E}(\vec{a},\vec{b}) = \langle \Psi | \vec{a} \ \vec{b} | \Psi \rangle = -\vec{a} \ \vec{b}$

QUANTUM STATEGY 1. ENTANGLED STATE $|\Psi\rangle = |0,1\rangle - |1,0\rangle$ 2. LOCAL MEAS $X_0 = \vec{z}$ $X_1 = \vec{x}$ and $Y_0 = -\vec{x} \cdot \vec{z}$ $Y_1 = \vec{x} \cdot \vec{z}$ X_0 $\vec{E(a,b)} = \langle \Psi | \vec{a} \vec{b} | \Psi \rangle = - \vec{a} \vec{b}$ X₁ $CHSH = E(X_{0}, Y_{0}) + E(X_{0}, Y_{1}) + E(X_{1}, Y_{0}) - E(X_{1}, Y_{1})$

QUANTUM STATEGY 1. ENTANGLED STATE $|\Psi\rangle = |0,1\rangle - |1,0\rangle$ 2. LOCAL MEAS $X_0 = \vec{z}$ $X_1 = \vec{x}$ and $Y_0 = -\vec{x} \cdot \vec{z}$ $Y_1 = \vec{x} \cdot \vec{z}$ X_0 $\vec{E(a,b)} = \langle \Psi | \vec{a} \vec{b} | \Psi \rangle = - \vec{a} \vec{b}$ X₁ $CHSH = E(X_0, Y_0) + E(X_0, Y_1) + E(X_1, Y_0) - E(X_1, Y_1)$ $= 1/\sqrt{2}$

QUANTUM STATEGY 1. ENTANGLED STATE $|\Psi\rangle = |0,1\rangle - |1,0\rangle$ 2. LOCAL MEAS $X_0 = \vec{z}$ $X_1 = \vec{x}$ and $Y_0 = -\vec{x} \cdot \vec{z}$ $Y_1 = \vec{x} \cdot \vec{z}$ X_0 $\vec{E(a,b)} = \langle \Psi | \vec{a} \vec{b} | \Psi \rangle = - \vec{a} \vec{b}$ X₁ $CHSH = E(X_0, Y_0) + E(X_0, Y_1) + E(X_1, Y_0) - E(X_1, Y_1)$ $= 1/\sqrt{2}$

QUANTUM STATEGY 1. ENTANGLED STATE $|\Psi\rangle = |0,1\rangle - |1,0\rangle$ 2. LOCAL MEAS $X_0 = \vec{z}$ $X_1 = \vec{x}$ and $Y_0 = -\vec{x} \cdot \vec{z}$ $Y_1 = \vec{x} \cdot \vec{z}$ X_0 $\vec{E(a,b)} = \langle \Psi | \vec{a} \vec{b} | \Psi \rangle = - \vec{a} \vec{b}$ X₁ $CHSH = E(X_0, Y_0) + E(X_0, Y_1) + E(X_1, Y_0) - E(X_1, Y_1)$ $= -1/\sqrt{2}$

USING QUANTUM RESOURCES ALICE $|\Psi\rangle$ BOB

QUANTUM STATEGY 1. ENTANGLED STATE $|\Psi\rangle = |0,1\rangle - |1,0\rangle$ 2. LOCAL MEAS $X_0 = \vec{z}$ $X_1 = \vec{x}$ and $Y_0 = -\vec{x} \cdot \vec{z}$ $Y_1 = \vec{x} \cdot \vec{z}$ X_0 $\vec{E(a,b)} = \langle \Psi | \vec{a} \vec{b} | \Psi \rangle = - \vec{a} \vec{b}$ X₁ CHSH = $E(X_0, Y_0) + E(X_0, Y_1) + E(X_1, Y_0) - E(X_1, Y_1) = 2\sqrt{2} > 2$

QUANTUM STATEGY 1. ENTANGLED STATE $|\Psi\rangle = |0,1\rangle - |1,0\rangle$ 2. LOCAL MEAS $X_0 = \vec{z}$ $X_1 = \vec{x}$ and $Y_0 = -\vec{x} \cdot \vec{z}$ $Y_1 = \vec{x} \cdot \vec{z}$ X_0 $\vec{E(a,b)} = \langle \Psi | \vec{a} \vec{b} | \Psi \rangle = - \vec{a} \vec{b}$ X_1 CHSH = $E(X_0, Y_0) + E(X_0, Y_1) + E(X_1, Y_0) - E(X_1, Y_1) = 2\sqrt{2} > 2$

QUANTUM NONLOCALITY

ANY THEORY SATISFYING LOCALITY IS INCOMPATIBLE WITH QUANTUM MECHANICS

STRONGER THAN ANY LOCAL CORRELATIONS

QUANTUM NONLOCALITY

ENTANGLEMENT VS NONLOCALITY

CONCEPTUAL DIFFERENCE

ENTANGLEMENT

NONLOCALITY

CONCEPT OF QUANTUM MECHANICS **BASED ON STATISTICS**

MODEL INDEPENDENT

HOW TO COMPARE THEM?

ENTANGLEMENT = Q NONLOCALITY ?

ENTANGLEMENT

QUANTUM NONLOCALITY

ENTANGLEMENT = Q NONLOCALITY ?

ENTANGLEMENT

QUANTUM NONLOCALITY
ENTANGLEMENT = Q NONLOCALITY ?

ENTANGLEMENT

QUANTUM NONLOCALITY

Q STATE

Q STATE + MEAS.

ENTANGLEMENT = Q NONLOCALITY ?

DO ALL ENTANGLED STATE VIOLATE A BELL INEQUALITY?

PURE STATES

QUANTUM NONLOCALITY

GISIN 1991 2 PARTIES

POPESCU-ROHRLICH 1992 N PARTIES

ENTANGLEMENT

QUANTUM NONLOCALITY

ENTANGLEMENT

QUANTUM NONLOCALITY

THERE EXIST MIXED ENTANGLED STATE WHICH ARE LOCAL

PROJECTIVE MEAS. POVMs

WERNER 1989

BARRETT 2002

ENTANGLEMENT

QUANTUM NONLOCALITY

THERE EXIST MIXED ENTANGLED STATE WHICH ARE LOCAL

PROJECTIVE MEAS. POVMs

WERNER 1989

BARRETT 2002

Werner states $\rho = \rho |\Psi > \langle \Psi | + (1-p) |/4$

ENTANGLEMENT

QUANTUM NONLOCALITY

THERE EXIST MIXED ENTANGLED STATE WHICH ARE LOCAL

PROJECTIVE MEAS. POVMs

WERNER 1989

BARRETT 2002

Werner states $\rho = p |\Psi > \langle \Psi | + (1-p) |/4$

MORE GENERAL SCENARIO

MULTIPLE COPIES CAN BE PROCESSED JOINTLY

MORE GENERAL SCENARIO

MULTIPLE COPIES CAN BE PROCESSED JOINTLY

SUPER-ACTIVATION OF NONLOCALITY

0 + ... + 0 **>** 0

0

PALAZUELOS PRL 2012

PALAZUELOS PRL 2012

0

NONLOCALITY IS SUPER-ADDITIVE

ENTANGLED MEASUREMENTS

NONLOCALITY AND TELEPORTATION

LARGE CLASS OF ENTANGLED STATES

CAVALCANTI, ACIN, NB, VERTESI arxiv 2012

IS ENTANGLEMENT = NONLOCALITY ?

PERES CONJECTURE (1999): BOUND ENTANGLED STATES ARE LOCAL

BIPARTITE CASE ?

VERTESI & NB PRL 2012

BACK TO SCHRODINGER (1935)

BACK TO SCHRODINGER (1935)

BACK TO SCHRODINGER (1935)

BACK TO SCHRODINGER (1935)

BACK TO SCHRODINGER (1935)

BACK TO SCHRODINGER (1935)

BY PERFORMING A LOCAL MEASUREMENT ALICE CAN STEER THE STATE OF BOB

~ REMOTE STATE PREPARATION

STEERING AS INFORMATION TASK

DISTRIBUTION OF ENTANGLEMENT FROM AN UNTRUSTED PARTY

STEERING AS INFORMATION TASK

DISTRIBUTION OF ENTANGLEMENT FROM AN UNTRUSTED PARTY

- 1. A SENDS STATE TO B
- 2. B CHOOSES MEAS BASIS AND TELLS A
- 3. A GUESSES OUTCOME OF B

STEERING AS INFORMATION TASK

DISTRIBUTION OF ENTANGLEMENT FROM AN UNTRUSTED PARTY

- 1. A SENDS STATE TO B
- 2. B CHOOSES MEAS BASIS AND TELLS A
- 3. A GUESSES OUTCOME OF B

WITH ENTANGLED STATE $H(\sigma_{x}|A) + H(\sigma_{z}|A) = 0$

HOLDS FOR ANY CHEATING STRATEGY

STEERING INEQUALITY $H(\sigma_{x}|A) + H(\sigma_{y}|A) \ge 1$

LOCAL UNCERTAINTY RELATION $H(\sigma_x) + H(\sigma_z) \ge 1$

STEERING INEQUALITIES

SUMMARY

3 FORMS OF INSEPARABILITY IN QM

3 DIFFERENT CONCEPTS

DO WE TRUST MEAS. DEVICES OR NOT

 $\langle W \rangle_{o} \leq 0$ FOR ANY SEPARABLE ρ

ENTANGLEMENT

DEVICE-INDEPENDENT QIP

GOAL: ACHIEVE INFORMATION-THEORETIC TASKS WITHOUT PLACING ASSUMPTIONS ON THE FUNCTIONING OF THE DEVICES USED IN THE PROTOCOL

NO ASSUMPTION ABOUT HILBERT SPACE DIMENSION OR ALIGNMENT OF MEASUREMENT DEVICES

BELL INEQ VIOLATION \implies TRULY RANDOM OUTCOMES

PIRONIO et al. NATURE 2010, COLBECK PhD 2007

BELL INEQ VIOLATION \implies TRULY RANDOM OUTCOMES

OUTCOMES CANNOT BE CORRELATED TO ANY OTHER PHYSICAL SYSTEM

PIRONIO et al. NATURE 2010, COLBECK PhD 2007

BELL INEQ VIOLATION \implies TRULY RANDOM OUTCOMES

OUTCOMES CANNOT BE CORRELATED TO ANY OTHER PHYSICAL SYSTEM

PIRONIO et al. NATURE 2010, COLBECK PhD 2007

DEVICE-INDEPENDENT Q CRYPTOGRAPHY

BELL INEQUALITY VIOLATION

LOCAL OUTCOMES ARE RANDOM AND UNCORRELATED FROM EVE

ACIN, NB, GISIN, MASSAR, PIRONIO, SCARANI PRL 2007

DEVICE-INDEPENDENT Q CRYPTOGRAPHY

BELL INEQUALITY VIOLATION

LOCAL OUTCOMES ARE RANDOM AND UNCORRELATED FROM EVE

SECURE EVEN IF EVE PREPARED THE DEVICES MORE ROBUST TO DEVICE IMPERFECTIONS

ACIN, NB, GISIN, MASSAR, PIRONIO, SCARANI PRL 2007

EXPERIMENTS / LOOPHOLES

PRACTICAL IMPERFECTIONS OPEN LOOPHOLES

EXPERIMENTS / LOOPHOLES

PRACTICAL IMPERFECTIONS OPEN LOOPHOLES

1. LOCALITY LOOPHOLE \rightarrow SPACE-LIKE SEPARATION

OPTICAL EXPERIMENTS

ASPECT et al. PRL 1982, TITTEL et al. PRL 1998, WEIHS et al. PRL 1998

EXPERIMENTS / LOOPHOLES

PRACTICAL IMPERFECTIONS OPEN LOOPHOLES

1. **LOCALITY LOOPHOLE** \rightarrow SPACE-LIKE SEPARATION

OPTICAL EXPERIMENTS

ASPECT et al. PRL 1982, TITTEL et al. PRL 1998, WEIHS et al. PRL 1998

2. **DETECTION LOOPHOLE** \rightarrow HIGH DETECTION EFFICIENCY

ATOMIC EXPERIMENTS

ROWE et al. NATURE 2001, MATSUKEVITCH et al. PRL 2007
PROGRESS (I)

BELL VIOLATION BETWEEN DISTANT IONS

 $CHSH = 2.19 \pm 0.09$

HOFMANN et al. SCIENCE 2012

PROGRESS (II)

LOOPHOLE-FREE STEERING

Total efficiency ~ 38% Steering ineq. violated by > 20 σ

WITTMANN et al. NJP 2012

PROGRESS (III)

NEW PROPOSALS

ATOM-PHOTON ENTANGLEMENT NB et al. PRL 2007, CABELLO & LARSSON PRL 2007, TEO et al. Arxiv 2012

CONTINUOUS VARIABLES

GARCIA-PATRON et al. PRL 2005, CAVALCANTI et al. PRA 2011

HIGHER DIMENSIONS VERTESI, PIRONIO, NB PRL 2010

HERALDED AMPLIFIER

GISIN, PIRONIO, SANGOUARD PRL 2010, CABELLO & SCIARRINO PRX 2012

SUMMARY

EXPERIMENTAL AND THEORETICAL PROGRESS TOWARDS LOOPHOLE-FREE BELL TEST

LAUNCH EXP. DEVICE-INDEPENDENT QIP

NIST: DI RANDOMNESS GENERATION

NONLOCALITY BEYOND QM

NONLOCALITY BEYOND QM

CAN WE HAVE CHSH = 4 ?

NONLOCALITY BEYOND QM

CAN WE HAVE CHSH = 4 ?

 $E(X_0, Y_0) = E(X_0, Y_1) = E(X_1, Y_0) = 1$ AND $E(X_1, Y_1) = -1$

IS CAUSALITY VIOLATED?

 $E(X_0, Y_0) = E(X_0, Y_1) = E(X_1, Y_0) = 1$ AND $E(X_1, Y_1) = -1$

CAN WE HAVE CHSH = 4 ?

NONLOCALITY BEYOND QM

POPESCU-ROHRLICH (PR) BOX

NONSIGNALING

MAXIMALLY NONLOCAL CHSH = 4

POPESCU & ROHRLICH 94, BARRETT et al. PRA 2005

POPESCU-ROHRLICH (PR) BOX

NONSIGNALING

MAXIMALLY NONLOCAL CHSH = 4

WHY DOES THE PR BOX NOT EXIST IN NATURE ?

POPESCU & ROHRLICH 94, BARRETT et al. PRA 2005

MACROSCOPIC LIMIT

BANCAL et al. PRA 2008

MACROSCOPIC LIMIT

CHSH ~ 2 + 1/√M

MACROSCOPIC LIMIT (M $\rightarrow \infty$) **LOCALITY**

BANCAL et al. PRA 2008

WITH PR BOXES

CHSH = 4 FOR ANY M !

NO MACROSCOPIC LIMIT NONLOCALITY AT ALL SCALES

NAVASCUES & WUNDERLICH 2010

MACROSCOPIC LOCALITY

PRINCIPLE: PHYSICAL CORRELATIONS BECOME LOCAL IN THE MACROSCOPIC LIMIT

MACROSCOPIC LOCALITY

NAVASCUES & WUNDERLICH 2010

CONCLUSION

NONLOCALITY IS FUNDAMENTAL IN QM

ENTANGLEMENT VS NONLOCALITY ?

USEFUL FOR QIP \rightarrow DEVICE-INDEPENDENT QIP

NEW PERSPECTIVE ON FOUNDATIONS OF QM

REVIEW ARTICLE : NB, CAVALCANTI, PIRONIO, SCARANI, WEHNER TO APPEAR SOON